Evaluation of Environmental Safety Concentrations of DMSA Coated Fe2O3-NPs Using Different Assay Systems in Nematode Caenorhabditis elegans
نویسندگان
چکیده
Dimercaptosuccinic acid (DMSA) coating improves the uptake efficiency presumably by engendering the Fe(2)O(3)-NPs. In the present study, we investigated the possible environmental safety concentrations of Fe(2)O(3)-NPs using different assay systems in nematode Caenorhabditis elegans with lethality, development, reproduction, locomotion behavior, pharyngeal pumping, defecation, intestinal autofluorescence and reactive oxygen species (ROS) production as the endpoints. After exposure from L4-larvae for 24-hr, DMSA coated Fe(2)O(3)-NPs at concentrations more than 50 mg/L exhibited adverse effects on nematodes. After exposure from L1-larvae to adult, DMSA coated Fe(2)O(3)-NPs at concentrations more than 500 μg/L had adverse effects on nematodes. After exposure from L1-larvae to day-8 adult, DMSA coated Fe(2)O(3)-NPs at concentrations more than 100 μg/L resulted in the adverse effects on nematodes. Accompanied with the alterations of locomotion behaviors, ROS production was pronouncedly induced by exposure to DMSA coated Fe(2)O(3)-NPs in the examined three assay systems, and the close associations of ROS production with lethality, growth, reproduction, locomotion behavior, pharyngeal pumping, defecation, or intestinal autofluorescence in nematodes exposed to DMSA coated Fe(2)O(3)-NPs were confirmed by the linear regression analysis. Moreover, mutations of sod-2 and sod-3 genes, encoding Mn-SODs, showed more susceptible properties than wild-type when they were used for assessing the DMSA coated Fe(2)O(3)-NPs-induced toxicity, and the safety concentrations for DMSA coated Fe(2)O(3)-NPs should be defined as concentrations lower than 10 μg/L in sod-2 and sod-3 mutant nematodes.
منابع مشابه
Comparison of toxicities from three metal oxide nanoparticles at environmental relevant concentrations in nematode Caenorhabditis elegans.
Nematode Caenorhabditis elegans has been developed in a variety of environmental studies to address adverse effects of a wide range of toxicants. In the present study, we compared the toxicities of three metal oxide nanoparticles (NPs) including TiO(2)-NPs, ZnO-NPs, and SiO(2)-NPs with the same nanosize (30 nm) after prolonged exposure from L1-larvae to adult at environmental relevant concentra...
متن کاملToxicity-based toxicokinetic/toxicodynamic assessment of bioaccumulation and nanotoxicity of zerovalent iron nanoparticles in Caenorhabditis elegans
Elucidating the relationships between the toxicity-based-toxicokinetic (TBTK)/toxicodynamic (TD) properties of engineered nanomaterials and their nanotoxicity is crucial for human health-risk analysis. Zerovalent iron (Fe0) nanoparticles (NPs) are one of the most prominent NPs applied in remediating contaminated soils and groundwater. However, there are concerns that Fe0NP application contribut...
متن کاملEffects of transgenic corn and Cry1Ab protein on the nematode, Caenorhabditis elegans.
The effects of the insecticidal Cry1Ab protein from Bacillus thuringiensis (Bt) on the nematode, Caenorhabditis elegans, were studied with soil from experimental fields cultivated with transgenic Bt corn (MON810) and with trypsinized Cry1Ab protein expressed in Escherichia coli. The content of Cry1Ab protein was above the detection limit of an ELISA test in only half of the soil samples obtaine...
متن کاملThe application of the comet assay to assess the genotoxicity of environmental pollutants in the nematode Caenorhabditis elegans
This study aimed to establish a protocol for cell dissociation from the nematode Caenorhabditis elegans (C. elegans) to assess the genotoxicity of the environmental pollutant benzo[a]pyrene (BaP) using the alkaline version of the single cell electrophoresis assay (comet assay). BaP genotoxicity was assessed in C. elegans (wild-type [WT]; N2, Bristol) after 48h exposure (0-40μM). Induction of co...
متن کاملSelection of Reliable Reference Genes in Caenorhabditis elegans for Analysis of Nanotoxicity
Despite rapid development and application of a wide range of manufactured metal oxide nanoparticles (NPs), the understanding of potential risks of using NPs is less completed, especially at the molecular level. The nematode Caenorhabditis elegans (C.elegans) has been emerging as an environmental model to study the molecular mechanism of environmental contaminations, using standard genetic tools...
متن کامل